翻訳と辞書 |
Local Euler characteristic formula : ウィキペディア英語版 | Local Euler characteristic formula In the mathematical field of Galois cohomology, the local Euler characteristic formula is a result due to John Tate that computes the Euler characteristic of the group cohomology of the absolute Galois group ''GK'' of a non-archimedean local field ''K''. ==Statement== Let ''K'' be a non-archimedean local field, let ''Ks'' denote a separable closure of ''K'', let ''GK'' = Gal(''Ks''/''K'') be the absolute Galois group of ''K'', and let ''Hi''(''K'', ''M'') denote the group cohomology of ''GK'' with coefficients in ''M''. Since the cohomological dimension of ''GK'' is two, ''Hi''(''K'', ''M'') = 0 for ''i'' ≥ 3. Therefore, the Euler characteristic only involves the groups with ''i'' = 0, 1, 2.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Local Euler characteristic formula」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|